動機:想要安裝 Caffe 於 MacOS 中,方便研究深度學習程式 for C++
準備環境:
1.macOS Mojave v.10.14.5
2.Python 3.7.3
3.Caffe 1.0.0
4.OpenCV 4.1.0
5.Homebrew 2.1.4-35
6.Protocol Buffers v3.8.0
實作步驟:
1.基本上按照 [參攷.2] 步驟去執行安裝,即可成功!!
以下提供我try了很久的 Makefile.config
2.[參攷.1]也有許多可卓參的內容...我是使用 Compilation with Make 及 CMake Build 兩種皆可成功...其中,有許多需要修改的地方,因沒擷圖就不寫了~~~
準備環境:
1.macOS Mojave v.10.14.5
2.Python 3.7.3
3.Caffe 1.0.0
4.OpenCV 4.1.0
5.Homebrew 2.1.4-35
6.Protocol Buffers v3.8.0
實作步驟:
1.基本上按照 [參攷.2] 步驟去執行安裝,即可成功!!
以下提供我try了很久的 Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 1 # USE_LEVELDB := 0 # USE_LMDB := 0 # This code is taken from https://github.com/sh1r0/caffe-android-lib USE_HDF5 := 1 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. #CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. #CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ # -gencode arch=compute_20,code=sm_21 \ # -gencode arch=compute_30,code=sm_30 \ # -gencode arch=compute_35,code=sm_35 \ # -gencode arch=compute_50,code=sm_50 \ # -gencode arch=compute_52,code=sm_52 \ # -gencode arch=compute_60,code=sm_60 \ # -gencode arch=compute_61,code=sm_61 \ # -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path BLAS_INCLUDE := $(shell brew --prefix openblas)/include BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ # /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) PYTHON_LIBRARIES := boost_python37 python3.7m PYTHON_INCLUDE := /usr/local/Cellar/python/3.7.3/Frameworks/Python.framework/Versions/3.7/include/python3.7m \ /usr/local/lib/python3.7/site-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/local/Cellar/python/3.7.3/Frameworks/Python.framework/Versions/3.7/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
2.[參攷.1]也有許多可卓參的內容...我是使用 Compilation with Make 及 CMake Build 兩種皆可成功...其中,有許多需要修改的地方,因沒擷圖就不寫了~~~
心得:想要安裝 Caffe 於 Mac,真不是普通的容易,不知是年代久遠加上大家不太使用的緣故,竟會在安裝過程中吃盡滿坑的地雷,為此特別記錄下我失去的二個禮拜的爆老肝時光...另外,別安裝 Anaconda(https://www.anaconda.com/),它會讓 Caffe、OpenCV4 等安裝編譯失敗,也讓我白白浪費了許多熬夜的時數!!
參攷:
1.官網 OS X Installation https://caffe.berkeleyvision.org/install_osx.html
2.Mac下基于python3.7,Opencv4.01进行caffe编译安装 https://blog.csdn.net/weixin_38665284/article/details/88313937
1.官網 OS X Installation https://caffe.berkeleyvision.org/install_osx.html
2.Mac下基于python3.7,Opencv4.01进行caffe编译安装 https://blog.csdn.net/weixin_38665284/article/details/88313937
留言